

LA-UR-21-23349

Approved for public release; distribution is unlimited.

Title: Effects of Shielding on Gamma Rays

Author(s): Stults, Katrina Ann

Karpius, Peter Joseph

Intended for: Presentation for Spectroscopic Alarm Adjudication Course

Issued: 2021-04-07

Effects of Shielding on Gamma Rays

Pete Karpius & Katrina Stults

April 2021

LA-UR-21-XXXXX Derived from LA-UR-17-22111

Introduction

- The interaction of gamma rays with matter results in an effect we call attenuation (i.e. 'shielding')
- Attenuation can dramatically alter the appearance of a spectrum
- Attenuating materials may actually create features in a spectrum via x-ray fluorescence

Radiation Types and Shielding

Question Time

- Are lead and water high-Z materials or low-Z materials?
- A) Lead is low Z, water is high Z
- B) Lead is high Z, water is low Z
- C) both lead and water are high Z
- D) both lead and water are low Z

What are Transmission and Attenuation?

The photons that DO interact with the material and lose some or all of their energy are <u>attenuated</u>
Attenuation is a function of intrinsic material properties (effective atomic number, density) and thickness

What are Attenuation and Transmission?

Attenuation: $I = I_0 e^{-\mu x}$

 $\underline{\text{Transmission}}: \quad T = I/I_0 = e^{-\mu x}$

 μ = linear attenuation coefficient (cm⁻¹)

x = thickness (cm)

Attenuation Coefficients

- Linear attenuation coefficients depend on density
 - Ice, water, water vapor all have different linear attenuation coefficients
 - Units are cm⁻¹
 - Some texts use μ some texts use μ
- Mass attenuation coefficients are independent of density
 - Ice, water, water vapor all have same mass attenuation coefficients
 - Units are cm²/g
- When in doubt- check the dimensions
 - exponent must be dimensionless

$$\mu_{mass} = \frac{\mu_{linear}}{\rho}$$

$$\frac{cm^2}{a} = \frac{1}{cm} \frac{cm^3}{a}$$

Attenuation and Atomic Number

At incident photon energies below ~ 1 MeV, the Z of the shielding material matters because this is where the photoelectric effect dominates.

At around ~ 2 MeV the <u>Compton</u> <u>Effect dominates</u> and the probability for interaction becomes independent of Z.

Does the Z of the shielding material matter when <u>pair</u> <u>production dominates</u>?

Question Time

- Which material will attenuate a ~400 keV gamma-ray the most?
- A) Tungsten (W- green)
- B) Aluminum (Al- orange)
- C) Iron (Fe- pink)
- D) Uranium (U- yellow)

Effect of Shielding in Spectra

Peak reduction

Continuum effects

Fluorescent X-rays from shielding materials

Differential attenuation- low vs high energy peaks

Shielding can change the "shape" of the spectrum

Transmission is Multiplicative

Shielding of the same type and thickness, **x**

Half-Value Layers

A half-value layer (HVL) is the amount of material required to reduce the radiation intensity at a specific energy by ½.

Energy [keV]	H2O [cm]	Fe [cm]	Pb [cm]	U [cm]
60	3.4	0.070	0.012	0.005
186	5.0	0.6	0.05	0.025
414	6.6	1.0	0.3	0.14
1001	9.8	1.5	0.9	0.5
2614	16.2	2.3	1.4	0.8

Infinite Thickness

What if we use 10 half-value layers?

Transmission, T, through one HVL is 1/2

$$T^{10} = \left(\frac{1}{2}\right)^{10} \cong \frac{1}{1000}$$

Only one photon out of a thousand gets through 10 HVLs. For all practical purposes, we can consider these photons COMPLETELY SHIELDED.

Question Time

Consider the direct gamma-ray signature of ²³⁵U, the peak at 186 keV.

Half Value Layers

Energy	H2O	Fe	Pb	U
[keV]	[cm]	[cm]	[cm]	[cm]
186	5.0	0.6	0.05	0.025

How much material to essentially shield all gammas from the primary direct gamma-ray signature of U-235, 186 keV?

A)

B)

C)

5 cm water OR

25 cm water OR

50 cm water OR

0.6 cm Fe OR

3 cm Fe OR

6 cm Fe OR

0.05 cm Pb or

0.25 cm Pb or

0.5 cm Pb or

0.025 cm U

0.125 cm U

0.25 cm U

How much shielding to kill 186 keV?

 As an example let's look at what it takes to totally shield the main, direct gamma-ray signature of ²³⁵U, that is the peak at 186 keV.

Half Value Layers

Energy	H2O	Fe	Pb	U
[keV]	[cm]	[cm]	[cm]	[cm]
186	5.0	0.6	0.05	0.025

How much material to essentially shield all gammas from the primary direct

gamma-ray signature of U-235, 186 keV?

If you surround HEU with more than 2.5 mm of DU, the only direct ²³⁵U gamma rays that you will see will come from the DU itself.

C) 10 HVL

50 cm water OR

6 cm Fe OR

0.5 cm Pb or

0.25 cm U

Bare vs. Shielded HEU

Measurements of 9x9" HEU (93% ²³⁵U) foils (~350 g total) in a film can were conducted in both bare and shielded configurations.

How many HVLs is 1.27 cm Fe for U-235?

Energy [keV]	H2O [cm]	Fe [cm]	Pb [cm]	U [cm]
60	3.4	0.070	0.012	0.005
186	5.0	0.6	0.05	0.025
414	6.6	1.0	0.3	0.14
1001	9.8	1.5	0.9	0.5
2614	16.2	2.3	1.4	0.8

Enter answer in chat

HEU Shielded by 1.27 cm of Steel

How much is the 186 keV reduced? How well can you "eye-ball" this here?

HEU Shielded by 1.27 cm of Steel

Linear scale makes the reduced transmission very clear.

HEU Shielded by ~0.6 cm of Pb (how many HVLs?)

HEU Shielded by ~0.6 cm of Pb

Effect of Shielding in Spectra

Continuum effects

Shielding Effects on Continuum

- What produces counts in the continuum?
 - Compton scattering in the detector medium
 - Compton scattering in the source itself
 - Compton scattering in the rest of the environment
 - I.e. ground, air, walls, detector electronics, people, and shielding, etc.
- (Aside: How to get zero continuum? Infinite detector medium + point source in a vacuum)
- Scattering produces continuum counts to the <u>low-energy side</u> of the fullenergy peaks

Where does Scattering Occur?

Scattering can occur in the detector medium, in the air, in the source itself, in shielding, etc.

If the source is point-like (e.g. 10 uCi of ¹³⁷Cs) then 'self-attenuation' is minimal. But not so for extended / distributed sources like SNM or the natural background

Continuum "step"

caused by multiple and small-angle scattering proportional to local peak amplitudes (areas)

Effect of Shielding in Spectra

Fluorescent X-rays from shielding materials

X-Ray Fluorescence (XRF)

Gamma rays from the source ionize the attenuating material via the photoelectric effect (shown) or the Compton effect, resulting in the emission of characteristic x rays.

Pb XRF in Low Resolution Data

X ray Peak Patterns (High Res.)

Since all elements build on the same inner-shell electron structure, peaks from characteristic x rays exhibit the **same pattern**, only shifted by energy, within the limits of detector resolution.

Pb XRF in a HPGe Spectrum

What indicates that these x rays might be from a Pb collimator and not Pb shielding the source? (answer in chat)

Making Predictions

- Low-E Photons + High-Z Shield
 - $E < \sim 200$ -ish keV, Z > 50-ish
 - More photons will be absorbed via the photoelectric effect
 - Contribution to Compton continuum will be minimized
- Med/High-E Photons (100's keV a few MeV)
 - E > ~500-ish keV, Z dependence is less
 - Compton scattering will dominate
 - More continuum, more step features
- High-E Photons (E several MeV)
 - Pair Production (especially for high-Z materials)

Summary

- Attenuation is a function of the incident gamma-ray, material properties, and the thickness of the material
- Half Value Layers (HVL) are a useful concept for estimating how much a given thickness of material will impact transmission of gamma-rays
- Shielding impacts spectra in predictable ways
 - Reduce peak height, with low energy peaks impacted more than high energy peaks (in extreme, to the point of altering the "shape")
 - Increased scattering gives counts in the continuum and increased steps
 - Characteristic x-rays from shielding materials
- We can use clues in the spectrum to infer information about the source's local environment

